快乐学习 一个网站喵查铺子(catpuzi.com)全搞定~

Academic Reading Strategies

中国大学MOOC答案

evolutionary lineage of the birds or in as much detail as one would like, it is better in this case than for many other animal groups. That is because of the unusual preservation in a limestone quarry in southern Germany of Archaeopteryx, a fossil that many have called the link between dinosaurs and birds. Indeed, had it not been for the superb preservation of these fossils, they might well have been classified as dinosaurs. They have the skull and teeth of a reptile as well as a bony tail, but in the line-grained limestone in which these fossils occur there are delicate impressions of feathers and fine details of bone structure that make it clear that Archaeopteryx was a bird. All birds living today, from the great condors of the Andes to the tiniest wrens, trace their origin back to the Mesozoic dinosaurs. 12. What does the passage mainly discuss?">The first flying vertebrates were true reptiles in which one of the fingers of the front limbs became very elongated, providing support for a flap of stretched skin that served as a wing. These were the pterosaurs, literally the “winged lizards.” The earliest pterosaurs arose near the end of the Triassic period of the Mesozoic Era, some 70 million years before the first known fossils of true birds occur, and they presumably dominated the skies until they were eventually displaced by birds. Like the dinosaurs, some the pterosaurs became gigantic; the largest fossil discovered is of an individual that had a wingspan of 50 feet or more, larger than many airplanes. These flying reptiles had large, tooth-filled jaws, but their bodies were small and probably without the necessary powerful muscles for sustained wing movement. They must have been expert gliders, not skillful fliers, relying on wind power for their locomotion. Birds, despite sharing common reptilian ancestors with pterosaurs, evolved quite separately and have been much more successful in their dominance of the air. They are an example of a common theme in evolution, the more or less parallel development of different types of body structure and function for the same reason — in this case, for flight. Although the fossil record, as always, is not complete enough to determine definitively the evolutionary lineage of the birds or in as much detail as one would like, it is better in this case than for many other animal groups. That is because of the unusual preservation in a limestone quarry in southern Germany of Archaeopteryx, a fossil that many have called the link between dinosaurs and birds. Indeed, had it not been for the superb preservation of these fossils, they might well have been classified as dinosaurs. They have the skull and teeth of a reptile as well as a bony tail, but in the line-grained limestone in which these fossils occur there are delicate impressions of feathers and fine details of bone structure that make it clear that Archaeopteryx was a bird. All birds living today, from the great condors of the Andes to the tiniest wrens, trace their origin back to the Mesozoic dinosaurs. 12. What does the passage mainly discuss?

The first flying vertebrates were true reptiles in which one of the fingers of the front limbs became very elongated, providing support for a flap of stretched skin that served as a wing. These were the pterosaurs, literally the “winged lizards.” The earliest pterosaurs arose near the end of the Triassic period of the Mesozoic Era, some 70 million years before the first known fossils of true birds occur, and they presumably dominated the skies until they were eventually displaced by birds. Like the dinosaurs, some the pterosaurs became gigantic; the largest fossil discovered is of an individual that had a wingspan of 50 feet or more, larger than many airplanes. These flying reptiles had large, tooth-filled jaws, but their bodies were small and probably without the necessary powerful muscles for sustained wing movement. They must have been expert gliders, not skillful fliers, relying on wind power for their locomotion.
Birds, despite sharing common reptilian ancestors with pterosaurs, evolved quite separately and have been much more successful in their dominance of the air. They are an example of a common theme in evolution, the more or less parallel development of different types of body structure and function for the same reason — in this case, for flight. Although the fossil record, as always, is not complete enough to determine definitively the <a href=evolutionary lineage of the birds or in as much detail as one would like, it is better in this case than for many other animal groups. That is because of the unusual preservation in a limestone quarry in southern Germany of Archaeopteryx, a fossil that many have called the link between dinosaurs and birds. Indeed, had it not been for the superb preservation of these fossils, they might well have been classified as dinosaurs. They have the skull and teeth of a reptile as well as a bony tail, but in the line-grained limestone in which these fossils occur there are delicate impressions of feathers and fine details of bone structure that make it clear that Archaeopteryx was a bird. All birds living today, from the great condors of the Andes to the tiniest wrens, trace their origin back to the Mesozoic dinosaurs. 12. What does the passage mainly discuss?" />
A、 Characteristics of pterosaur wings B、 The discovery of fossil remains of Archaeopteryx C、 Reasons for the extinction of early flying vertebrates D、 The development of flight ……继续阅读 »